

# REINFORCEMENT LEARNING FOR CONTROL

## **Assignment**

Complex controllers can be implemented through deep neural networks that are trained using reinforcement learning (RL). Such a system is self-learning through interaction with an environment. Since RL techniques are data-intensive and learning by interacting with a real-world environment is often not possible, virtual environments are typically used for training the controller. Recent research shows that learning from pixels can be as efficient as from state-based features in case the state is observable from the pixels.

You will use game/physics/rendering engines to train a controller using reinforcement learning. As a specific case, we initially focus on balancing a ball on a platform. We possess such a platform as a physical system at Sioux.

## **Activities**

You will investigate simulation tools for RL purposes, in particular Unity and will setup an environment for simulation and training. You will consider various RL algorithms and test a selection of these. You probably need to tweak the training and model so it works.

# Internship overview

- Master Student
- Internship (potentially Graduation)
- Mathware
- Location: Eindhoven

# **Technologies**

- Reinforcement Learning
- Control
- Simulation
- 3D/Game Engines (Unity)





## Context

The sim-to-real gap is about learned policies in a virtual environment failing in the real world. How to make it work in a real environment too? If time allows, you could also investigate how to transfer a learned policy in a virtual environment to a real physical system.



# Why choose Sioux?

- Working on innovative technology
- Challenging, dynamic and varied work
- A comfortable and personal work environment
- Plenty of opportunities for personal development
- Great carreer opportunities
- Contributing to a safe, healthy and sustainable society

## Get in touch!

Would you like to know more about this student assignment?

#### Contact:

Casper Gruijthuijsen +31 (0)40 751 61 16 werving\_mathware@sioux.eu